ADM Application in Slope Mountain

发布于: 2020-09-07 10:03
标签: Project Cases

 

In this article we will introduce an application of ADM. Please see this picture first. It’s a slope mountain. Under the mountain there is a river. We have a high-speed rail go across the foot of mountain, along with the river. The government had used INSAR technology knew that this slope mountain may have the risk of landslide. But they don’t know which is the exactly direction of deformation, what is the speed of the deformation, and when will it be dangerous? If the landslide happens, it may block the river and lead some disaster.

That means this slope mountain needs high accuracy deformation monitoring in depth. We get this project and use our ADME to monitor.

(We totally installed 3 borehole devices, one 100m depth, two 50m depth. 100m depth has the longest time, so we use this as sample, the borehole number is CX3-5)

       Model: ADME-100, 1m/segment

       Total Length: 100m

       Data Collect Frequency: 1 time/ 30 minutes

       Start Time: 15th December, 2018

       End time: 21th August, 2020

       Total Monitor time: 20 months.

     

 Now we already stop this monitor project. Because the high-speed rail has changed its way, and government also had taken protection solution. Here we just analysis the data.

       The history data link is:  http://tsy.huasi-measure.com/

       Account is: tsy001

       Password is: tsy001

(We already get the permission to use this data as demonstration data, and this account is just a visit account, just can visit history data, can’t edit)

1.Here we check the data from 15th December 2018 to 21th August 2020. Data interval is 30 days.

Next picture shows the deformation in X(Left) axis and Y(Right) axis. We can see from the picture the deformation begins from the depth of 94m, the maximum deformation of X is about 60mm, the maximum deformation of Y is 80mm. Then we can have this conclusion:

(1)The dangerous landslide layer is in 95m depth.

(2)Depends on the deformation of X, Y we can calculate an approximate landslide volume which will help us to use the best protection solution.

2.Here is another picture, I select Node 280276 as sample to explain. This picture shows the “Cumulative displacement trend chart”. Red line shows for X direction, blue line shows for Y direction. We can get such information from this picture.

(1)From 13th February 2019 to 13th July 2019, X direction was keeping deforming, the maximum deformation is 54mm. From 13th July 2019 to 12th August 2019, X has a deformation in the opposite direction. From 12th August 2019 till now, X has a very little deformation, the total deformation is stable in 45mm.

(2)From 14th April 2019 to 13th July 2019, Y’s deformation is about 12mm. But from 13th July 2019 to 12th August 2019, Y’s deformation is up to 50mm. That means the mountain has a big deformation in just one month. But after 12th August 2019, to now, Y’s deformation also becomes stable.

3. Here is the third picture. I also use Node 280276 as sample. From this picture we can see the deformation direction in X-Y coordinate system. And we can know the where is X-Y direction in reality. That means we can know the deformation direction of this slope mountain in our real world. After checking the picture, we can know that the deformation is toward for Southeast direction.

Finally, from the data analysis, we can know that the maximum deformation stated in February 2019, stopped in July 2019. The landslide layer is in 95m depth. And the deformation direction is Southeast.

Our monitor software also can early alarm the deformation. Based on these data, we can take protection in advance to avoid disasters.

 

ASSOCIATED PRODUCTS

                       

                Flexible Inclinometer                                             Data Logger                                                                      Monitoring Cloud Platform

__________________________________________________________________________________________________________________________________

分享

推荐文章

  • 10-21 2025
    GINTEC
    Azerbaijan, Baku, October 2023 – Gintect, a leading global provider of high-precision positioning solutions, successfully conducted a business visit to its strategic partner, Geo Total, in Azerbaijan from October 13th to 15th, 2023. The visit not only strengthened the collaboration between the two parties but also showcased Gintect's innovative technological strength to the local market through a successful new product launch. During the visit, the Gintect team was warmly welcomed by Geo Total. To introduce the brand-new G40PRO RTK and P7 Handheld products brought by Gintect, Geo Total specially organized a compact product launch event, inviting its local agents and key clients. At the launch event, the Gintect team presented the company's history, professional testing systems, manufacturing, and R&D capabilities. The tea...
  • 10-09 2025
    GINTEC
    October 7, 2025, Frankfurt – INTERGEO, the world's premier event for surveying, geomatics, and geoinformation, officially commenced today in Frankfurt, Germany.
  • 08-29 2025
    GINTEC
    Under the EU's new cybersecurity regulations, we have taken the lead in obtaining certification, ensuring seamless product trade for you. Recently, our G50 Laser RTK product has successfully passed the EU EN 18031 cybersecurity certification, making it one of the first products in the industry to meet this mandatory standard. This certification signifies that G50 Laser RTK has achieved the highest EU standards in cybersecurity, data privacy protection, and anti-fraud capabilities, providing a solid foundation for continued sales and import in the European market. 01 EU New Regulations: EN 18031 Certification Becomes Key to Market AccessThe European Commission adopted the supplementary delegated regulation (EU) 2022/30 in 2022, explicitly requiring radio equipment to meet cybersecurity, privacy protection, and anti-fraud requirements. In January 202...
  • toolbar